膜分离技术是在外力推动下,利用一种具有选择透过性能的特制薄膜作为选择障碍层使混合物中某些组分易透过,其他组分难透过被截留,来达到分离、提纯、浓缩作用的技术。其工作原理为:一是根据混合物中组分质量、体积、大小和几何形态的不同,用过筛的方法将其分离;二是根据混合物不同化学性质进行分离,物质通过分离膜的速度(溶解速度)取决于进入膜内的速度和进入膜表面扩散到膜另一表面的速度(扩散速度),其中溶解速度完全取决于被分离物与膜材料之间化学性质。
一般,膜的形态结构决定其分离机理及应用方式。根据结构的不同,膜可分为固膜和液膜,固膜又可分为对称膜(柱状孔膜、多孔膜、均质膜)和不对称膜(多孔膜、具有皮层的多孔膜、复合膜),液膜可分为存在于固体多孔支撑层中的液膜和以乳液形式存在的液膜两种。
超滤以压力为驱动力,利用超滤膜的高精度截留性能进行固液分离或使不同分子量物质分级的膜分离技术。广泛应用于生活污水处理中的超滤膜过滤精度为0.01 m,对胶体、藻类、病毒、有机大分子等有很好的去除率。
山西大唐国际云冈热电有限责任公司的生活污水处理系统,周李鑫、濮文虹等以北京市郊某市政污水处理厂一期(氧化沟处理工艺)工程二沉池出水和二期(sbr处理工艺)工程二沉池出水为原水,分别采用絮凝一砂滤一超滤和直流一混凝一超滤的预处理工艺,结果表明,两种工艺出水的sdi,'b于2,浊度达no.04-0.1ntu,cod 去除率20%~60%,一定程度上还降低了氨氮、总磷等污染物浓度,sdi、浊度与产水量均达到了反渗透进水水质的要求。
纳滤(nf)是近20年发展起来的介于反渗透(ro)和超滤(uf)之间的新型膜分离技术,对二价或多价离子及分子量介于200~500之间的有机物有较高脱除率。由于其特殊的孔径范围和制备时的特殊处理(如复合化、荷电化),使得纳滤膜具有较特殊的分离性能。
生活污水一般用生物降解/化学氧化法结合处理,但氧化剂用量太大,残留物多,若在它们之间加上纳滤环节,使可被微生物降解的小分子(mw<100)透过,截留住不可生物降解的大分子(mw>100),然后大分子物质在化学氧化器处理后再进行生物降解,这样就可节约氧化剂和活性炭的用量,降低最终残留物的含量。
含硒的农业排放废水已在世界范围内成为一个新的污染源,如美国加利福尼亚州的san joaquin谷,盐化污水含硒量已达到4 200mg/l。湿地环境受该废水污染,出现高比率的水鸟胚胎畸形和死亡的硒中毒现象。kharaka等人试验得出,采用纳滤技术处理加利福尼亚谷的重污染废水,可截留95%以上的硒和90%以上的其他多价阴离子。
纳滤膜处理大量污水且所需压力低,预处理步骤少,成本低,处理含硒的农业排放废水为其他含硒废水提供了突破性的处理方法。在金属加工和电镀工业中清洗水和电镀液中常含有浓度较高的重金属离子,如铜、镉、镍、铁等,采用纳滤膜可使这些金属离子浓缩10倍,并回收90%以上的废水。利用某些金属离子在一定氯离子浓度下可形成荷电和非荷电络合物的性质,用荷电纳滤膜可将它们分离开,如镉和镍在氯化纳浓度为0.5mo1/l时,前者以电中性络合物的形式存在,而后者形成荷正电络合物,于是带正电的纳滤膜可截留镍离子,实现两种离子的分离”。
半个世纪以来,膜分离完成了从实验室到大规模工业应用的转变,成为一项高效节能的新分离技术。膜分离技术在水处理方面的应用既保护环境,又回收有用物资。除上述应用外,膜分离技术在电镀废水、电泳漆废水、纤维工业废水、食品加工、医疗医药、摄影废水和放射性废水等方面也都有很多应用。但是膜技术毕竟还是一门年轻的发展中的综合性学科,膜分离技术正处于发展上升阶段,无论是理论上还是应用上都还有很多工作要做,所以还需要不断探索,不断开发新的过程,研制新的材料,将膜技术进一步发展和完善,使它在各个领域发挥更大的作用。
答:物质通过分离膜的速度(溶解速度)取决于进入膜内的速度和进入膜表面扩散到膜另一表面的速度(扩散速度),其中溶解速度完全取决于被分离物与膜材料之间化学性质。
答:电镀废水、电泳漆废水、纤维工业废水、食品加工、医疗医药、摄影废水和放射性废水等方面。